SmartRefract a free and open source software for seismic refraction

Simone Pittaluga

Istituto di Matematica Applicata e Tecnologie Informatiche Sede secondaria di Genova



#### The Challenge:

 Determining the depth and the shape of bedrock, where significant velocity contrasts between the top-soil, the weathered layer and the underlying bedrock exists

#### What is a refraction event?

- A refraction event occurs when a seismic wave encounters an interface between two materials with different seismic velocities.
- **Critical refraction:** When the angle of incidence exceeds a critical angle, the seismic wave is refracted along the interface.



# Does smartRefract fit any kind of "refraction"?

#### The Right Data for the Right Tool

- Correct Data, Accurate Results: Requires seismic refraction data to provide reliable results.
- Correct geometry: Requires the right setup of shots and geophones
- Correct geology: Requires the right velocity configuration



#### The Right Data for the Right Tool

- Correct Data, Accurate Results: Requires seismic refraction data to provide reliable results.
- Correct geometry: Requires the right setup of shots and geophones
- Correct geology: Requires the right velocity configuration

- Correct survey setup
- Correct picking
- Correct travel time parametrization

#### Picking the first breaks

- **First break picking** is a crucial step in seismic data processing, particularly for seismic refraction surveys. It involves identifying the arrival time of the first seismic wave at each geophone.
- Challenges in First Break Picking:
  - Noise Interference: Noise from various sources, such as wind, traffic, and electronic interference, can obscure the first arrival.
  - **Complex Waveforms:** In some cases, the first arrival may be difficult to distinguish from later arrivals or noise.



#### Picking the first breaks

- Avoid record echo from the other side of the Earth: set recording time short enough
- Avoid measure sound speed in air again: there is a lot of papers about this



#### **Travel Times Plot Anatomy**

- The arrival times of the first seismic waves at each geophone are plotted against their distance from the source.
- The resulting plot is typically a curve with two distinct segments:
  - **Direct Wave Segment:** Represents the wave traveling directly through the upper layer.
  - **Refracted Wave Segment:** Represents the wave that refracts along the interface between the two layers.



## Identifying Refraction Events on Travel Time Plots

- Refraction Events on Travel Time Curves: Refraction events are characterized by a distinct change in slope on a travel time curve.
- Key Indicators:
  - Break in Slope: A sudden change in the gradient of the curve indicates the onset of a refracted wave.
  - Linear Segment: The refracted wave typically forms a linear segment on the plot.



#### Ambiguity of travel times plot



#### Ambiguity of travel times plot



From D.Palmer – The Mt Bulga Tutorial 2011

#### Fix the ambiguity of travel times

- Multiple Perspectives: By acquiring data from various shot points, you can observe subsurface layers from different angles.
- Improved Resolution: This approach helps to reduce uncertainty and improve the resolution of the subsurface model.
- Reduced Interference: Moving the shot point can help to minimize the impact of nearsurface noise and interference.
- Enhanced Depth Penetration: By increasing the shot-geophone distance, you can probe deeper into the subsurface.



From D.Palmer – The Mt Bulga Tutorial 2011

#### Fix the ambiguity of travel times

- Multiple Perspectives: By acquiring data from various shot points, you can observe subsurface layers from different angles.
- Improved Resolution: This approach helps to reduce uncertainty and improve the resolution of the subsurface model.
- Reduced Interference: Moving the shot point can help to minimize the impact of nearsurface noise and interference.
- Enhanced Depth Penetration: By increasing the shot-geophone distance, you can probe deeper into the subsurface.



#### "Simone, smartRefract doesn't work at all"



"Where is my refraction?"

#### "Simone, smartRefract doesn't work at all"





Where my endline shots are?

#### The answer



- Shortly: no
- SmartRefract needs:
  - At least 2 end line shots (forward and reverse shots)
  - A refractor, of course

# The birth of smartRefract

## A journey from Personal Project to Open Source

- Filling a Gap: Existing software was either too complex or lacked stability.
- A Personal Project: SmartRefract was born as a personal endeavor to address these limitations.
- Developing SmartRefract has provided me with handson experience and a deeper understanding of seismic refraction



#### The workflow



## SmartRefract: A Cross-Platform Application Built on Java and NetBeans

- Developed in Java: SmartRefract is built using the Java programming language.
- Powered by NetBeans: The NetBeans platform provides the development environment for SmartRefract.
- Cross-platform compatibility: Thanks to Java, SmartRefract can run seamlessly on Windows, macOS, and Linux.
- Benefits of Netbeans platform development:
  - Installer for each supported OS.
  - A built-in **updater** for free.

#### The Double-Edged Sword of Java and NetBeans

- Advantages: Cross-platform compatibility: As mentioned, Java and NetBeans make it easy to create applications that can run on multiple platforms.
- Challenges: Development complexity: Keeping up with the evolving Java and NetBeans ecosystems can be challenging.
- Maintenance overhead: Maintaining a large Java (and Netbeans) codebase can be time-consuming.
- Potential performance issues: In some cases, Java applications may not perform as well as those written in lower-level languages.



# The smartRefract approach

A quick dive into UI and algorithm



|   |                                                                                                                        |       |    | Ok                |
|---|------------------------------------------------------------------------------------------------------------------------|-------|----|-------------------|
|   | Intergeophonic distance (m)                                                                                            | 2.0   | \$ | Cancel            |
|   | Position of first geophone (m)                                                                                         | 5.0   |    |                   |
| [ | Shot position (m)                                                                                                      |       |    | Help              |
|   | File scoppio Posizione s<br>2022-12 0.0<br>2022-12 4.0<br>2022-12 20.0<br>2022-12 26.0<br>2022-12 36.0<br>2022-12 40.0 |       |    | Elevation<br>Draw |
|   | -5.0m -1.0m 4.5 7.5 10.5 +1.0m -                                                                                       | +5.0m | \$ |                   |
|   |                                                                                                                        |       |    |                   |

- The geophones must be equally distanced
- Shots position can be inserted using two different ways:
  - By editing the shot position table;

or

 By insert or select a string in the combo box below the table



|                                                                                                 |         |   | Ok        |
|-------------------------------------------------------------------------------------------------|---------|---|-----------|
| Intergeophonic distance (m)                                                                     | 2.0     | • | Cancel    |
| Position of first geophone (m)                                                                  | 5.0     |   |           |
| Shot position (m)                                                                               |         |   | Help      |
| File scoppio     Posizione s       2022-12     0.0       2022-12     4.0       2022-12     14.0 |         |   | Elevation |
| 2022-12 14.0<br>2022-12 20.0<br>2022-12 26.0                                                    |         |   | Draw      |
| 2022-12 36.0<br>2022-12 40.0                                                                    |         |   |           |
|                                                                                                 |         |   |           |
|                                                                                                 |         |   |           |
|                                                                                                 | n +5 0m | • |           |

#### Shot geometry syntax:

- Numbers followed by m mean distance before or after the first geophone or last geophone;
  - A shot with an offset of -5m is located 5 meters before the first geophone.
  - A shot with an offset of +10m is located 10 meters after the last geophone.
- Number without m are expressed as geophones number starting from 0;
  - A shot placed at 4.5 is between the 5<sup>th</sup> and 6<sup>th</sup> geophones





- SmartRefract offers both automatic and manual picking options to suit your workflow:
  - Automatic Picking:
    - Utilizes a robust STA/LTA algorithm to identify first breaks efficiently.
    - Ideal for large datasets and routine processing.
  - Manual Picking:
    - Provides precise control over first break identification.
    - Enables fine-tuning for complex waveforms and challenging data conditions.





- STA/LTA Algorithm for Precise First Break Picking
  - Short-Term Average (STA): Calculates the average amplitude of a short time window.
  - Long-Term Average (LTA): Calculates the average amplitude of a longer time window.
  - **STA/LTA Ratio:** The ratio of the STA to the LTA is calculated.
  - First Break Detection: When the STA/LTA ratio exceeds a predefined threshold, it indicates a significant increase in signal amplitude, likely corresponding to the first arrival.



- Assigning travel times to layers is quite straightforward:
  - Click and drag on the plot to select the portion of travel time graph belongs to the selected (number in the sidebar) layer
  - Be careful: no check on layer consistency; V1 must be lesser then V2 and V2 lesser then V3





What's behind profile plotting?

- smartRefract select the endline shots that map first and second layer
- smartRefract try to build a phantom travel time where layers are non mapped to real travel times
- smartRefract compute the depth profile exploiting GRM



- Phantoming travel times:
  - Reconstruct travel times where not mapped by moving and interpolate data towards selected endline shots





- The Generalized Reciprocal Method (GRM):
  - Reciprocal Measurements: The GRM utilizes both forward and reverse travel time data, providing a more robust analysis.
  - Optimum XY Spacing: The method involves finding the optimal spacing between geophones (XY) to maximize the accuracy of the depth and velocity estimates.





- **Definition:** The TV function (Time-Velocity function) relates the travel time of a seismic wave to its distance from the source.
- Role in GRM: The TV function is used to determine the optimal XY spacing for the GRM analysis.
- Interpretation: The slope of the TV function represents the reciprocal of the seismic velocity in a particular layer.

$$t_{v} = T_{AEDY} - T_{BFDX} + T_{AEDFB}$$





- Definition: The TG function (Time section) is a profile in travel time before migration.
- **Optimum XY Spacing:** The TG function can be used to determine the optimal XY spacing for the GRM analysis

$$t_G = \frac{1}{2} (TAEDY + TBFDX - TAEDFB - XY/V_n)$$

$$Z_1 = T_{G1} \frac{V_2 V_1}{\sqrt{V_2^2 - V_1^2}}$$





- Optimum XY values (Palmer 1981):
- Smoothness of TV Function: The optimum XY value is chosen to make the TV function as smooth as possible.
- Roughness of TG Function: The optimum XY value also maximizes the roughness of the TG function.
- Automated Optimization: SmartRefract automates the process of finding the optimal XY spacing



Non uniqueness of XY value

Source of image: https://rayfract.com/pub/XY@26.pdf



#### • Palmer's 2011 Approach:

- Computing TV and TG for Multiple XY Values: Calculate TV and TG functions for a range of XY values.
- Averaging Functions: Average the TV and TG functions obtained for different XY values to create a more robust and reliable estimate.







#### Any volunteers?

From D.Palmer – The Mt Bulga Tutorial 2011





- SmartRefract offers different option to personalize profile:
- Proportional/maximized profile
- Changing color and pattern
- Exporting image

And....

#### **Phantoming options**



 Welcome to the hell of the worst but useful smartRefract dialog:
The More phantoming/Tv/Tg settings dialog

| T                           | raveltime Phantom | ing Tv T   | g |   |
|-----------------------------|-------------------|------------|---|---|
| Automatic phantoming        |                   |            |   |   |
| Layer 1 📃 Visible 🛛 O Enabl | ed                | - [        |   | - |
| ayer 2 Visible 💿 Enabl      | ed                |            |   |   |
| Manual phantoming           |                   |            |   | - |
| ayer 1 🗌 Visible 🔿 Enable   | ed 📀 Editable     | -          |   | - |
| ayer 2 Visible Enable       | ed 🕕 Editable     | b0 <b></b> |   | - |
| Forward baseshot Visible    |                   | ·          |   | - |
| Reverse baseshot Visible    |                   | 20 —       |   | - |
|                             |                   | -          |   | - |
|                             |                   | 10 —       |   | _ |
|                             |                   |            |   |   |
|                             |                   | -          |   | - |
|                             |                   | •_         |   |   |
|                             |                   | -          |   |   |



# The More phantoming/Tv/Tg settings dialog.

- From this dialog you can fix error in the reconstruction of travel times before and after hinge points
- Correct the reciprocal times
- Select manually a value of XY

| A       |             |           |            |    |   |
|---------|-------------|-----------|------------|----|---|
| Layer 1 | Visible     | • Enabled |            | -  |   |
| Layer 2 | Visible     | • Enabled |            | 40 | _ |
| Manual  | phantoming- |           |            |    |   |
| Layer 1 | Visible     | O Enabled | O Editable | -  | - |
| Layer 2 | Visible     | 🔘 Enabled | 🔘 Editable | 30 | - |
| Forward | baseshot V  | /isible   |            | -  | - |
| Reverse | baseshot V  | isible    |            | 20 | - |
|         |             |           |            | -  | - |
|         |             |           |            | 10 | - |
|         |             |           |            | -  | - |
|         |             |           |            |    |   |



- Glossary:
- Baseshots are the two reciprocal travel times selected as reference by the software
- Enabled is the reconstructed traveltime actually used in profile building
- Editable allow or not to manually reconstruct travel times

|                                                                                           | Traveltime Phantoming Tv Tg |
|-------------------------------------------------------------------------------------------|-----------------------------|
| Automatic phantoming<br>Layer 1 Visible O Enabled<br>Layer 2 Visible Enabled              | 1.                          |
| Manual phantoming<br>Layer 1 Visible Enabled Editable<br>Layer 2 Visible Enabled Editable |                             |
| Forward baseshot Visible<br>Reverse baseshot Visible                                      | 30-                         |
|                                                                                           | 20-                         |
|                                                                                           | 10-                         |
| Reset Phanthom Tx Save Phantom TX                                                         |                             |



 Remember to press save phantom TX before applying

| Automatic phanto                      | oming       |               | 1    |   |   |   |   |   |   |   |   |   |   |   |  |
|---------------------------------------|-------------|---------------|------|---|---|---|---|---|---|---|---|---|---|---|--|
| Layer 1 📃 Visib                       | le 🔾 Enable | d             |      | _ |   |   |   |   |   |   |   |   |   |   |  |
| Layer 2 📃 Visib                       | le 💿 Enable | d             |      |   |   |   |   |   |   |   |   |   |   |   |  |
| Manual phantoming                     |             | 40-           |      |   |   |   |   |   |   |   |   |   |   |   |  |
| Laver 1 Visib                         | e Enable    | d 🔼 Editable  |      |   | _ |   |   | _ |   |   |   | _ |   |   |  |
|                                       |             |               | -    |   |   |   |   |   |   | _ | _ | - |   |   |  |
| Layer 2 Visib                         | le 🕕 Enable | d 🕜 Editable  |      |   |   | - |   | _ |   |   |   |   | п |   |  |
| Forward baseshot                      | Visible     |               | 30 - |   |   |   |   | Ц | 目 |   | Β | B |   |   |  |
| Reverse baseshot                      | Visible     |               |      |   |   |   |   |   |   |   |   |   |   |   |  |
| · · · · · · · · · · · · · · · · · · · |             |               | -    |   |   |   |   |   |   |   |   |   |   | _ |  |
| 0.0 m 🗹                               |             |               |      |   | в |   | н |   |   |   |   |   |   |   |  |
| 4.0 m 🗹                               |             | 0 🗘           | 20-  |   |   | Β |   |   |   |   |   |   |   |   |  |
| R-14.0 m 🔽                            |             | 0 🗘           |      |   |   |   |   |   |   |   |   |   |   |   |  |
| 14.0 m 🔽                              |             | 0 0           |      |   |   |   |   |   |   |   |   |   |   |   |  |
| R 20.0 m 2                            |             | 0 0           | 10-  |   |   |   |   |   |   |   |   |   |   |   |  |
| K-20.0 III V                          |             |               |      |   |   |   |   |   |   |   |   |   |   |   |  |
| 20.0 m 🗹                              |             | 0 🗘           | -    |   |   |   |   |   |   |   |   |   |   |   |  |
| P_260m 🔽                              |             | 0 ^           |      |   |   |   |   |   |   |   |   |   |   |   |  |
| Reset Phanthor                        | n Tx Sa     | ve Phantom TX | 0 -  |   |   |   |   |   |   |   |   |   |   |   |  |
|                                       |             |               |      |   |   |   |   |   |   |   |   |   |   |   |  |



- Red circles shows manually reconstructed traveltimes
- Sky Filled squares are the baseshots t.t.
- Red empty squares are automatic travel times



# Live demo

(crossed finger)

# Conclusion & future works

#### Conclusion

- The open-source nature make the software available to a wide range of users
- Benefits from feedback from users to improve usability
- One man band project: high risk of no time to update
  - Needs to build up a community of contributor

#### Future works (& dreams)

- Implement a check of reciprocal travel times consistency
- Implement an automatic mapping of travel times to layers

Dreams

- AI powered first break picking
- AI powered mapping of travel times to layers
- Realtime profile during surveys

## Thank you

smartRefract, these slides and the demo datasets are available for download from: <u>https://www.vs30.it</u>

Email: simone.pittaluga@cnr.it